
CodeFume: LLM-Powered Detection and
Refactoring of Object-Oriented Code Smells

Alara Zeybek∗, Ece Beyhan†, Yaşar Tatlıcıoğlu‡, Serhat Yılmaz§
Group T9, CS437

∗22102544, †22003503, ‡22003856, §22002537
{alara.zeybek,ece.beyhan,yasar.tatlicioglu,serhaty}@ug.bilkent.edu.tr

Abstract—CodeFume is an LLM-driven platform for detecting
and refactoring object-oriented code smells in software systems.
Existing static analyzers often miss semantic context and fail
to provide actionable refactorings; CodeFume overcomes these
limitations through a two-stage, instruction-based pipeline that
leverages large language models (LLMs) for nuanced smell
identification and automated remediation. First, CodeFume issues
a structured detection prompt to an LLM to identify four
prevalent smells—Long Method, Large Class, Feature Envy, and
God Object—returning type, location, severity, and descriptive
justifications in JSON format. Second, a dedicated refactoring
prompt generates targeted code transformations grounded in
SOLID principles, and an automated equivalence check verifies
functional correctness. We evaluate CodeFume on 100 manually
labeled Java cases and 54 real-world C# samples, measuring
detection accuracy, refactoring quality, and structural code
metrics. Our results show detection rates of 100 % for Long
Method, 89 % for Large Class, and 52.5 % for Feature Envy;
refactorings achieve up to 94 % functional equivalence on class-
level smells and deliver up to 76 % cyclomatic complexity
reduction and 212 % maintainability improvement for structural
issues. A comparative study of Google Gemini versus GPT-4.1-
nano highlights Gemini’s superior maintainability preservation
and token efficiency. Key contributions include: (i) a novel
prompt-based detection and refactoring architecture; (ii) struc-
tured JSON outputs for seamless integration; (iii) an end-to-
end evaluation framework; and (iv) comparative LLM analysis.
By combining semantic understanding with traditional metrics,
CodeFume enables developers to rapidly identify and remediate
design flaws, reducing technical debt and improving long-term
code quality.

I. INTRODUCTION

Modern software systems often suffer from structural issues
commonly known as code smells that reduce readability, main-
tainability, and long-term quality. Traditional static analysis
tools like SonarQube can detect surface-level patterns, but they
struggle with semantic context, offer limited customization,
and rarely provide actionable refactorings.

To overcome these limitations, we introduce CodeFume [1],
a web-based assistant powered by Large Language Models
(LLMs) for semantic smell detection and automated refactor-
ing. CodeFume employs a prompt-driven architecture consist-
ing of two stages: detection and refactoring.

In the detection stage, CodeFume sends code snippets to
an LLM using a detailed system prompt to identify smells
and return structured JSON output. In the refactoring stage,
a second LLM uses this analysis to produce targeted code
changes while minimizing hallucinations. All prompts are

optimized for zero-shot instruction clarity and token efficiency
to ensure consistent and interpretable outputs.

Our key contributions are:
• A novel prompt-based pipeline for semantic code smell

detection.
• An automated LLM-driven refactoring engine producing

SOLID-aligned improvements.
• A comprehensive evaluation on Java and C# datasets,

measuring accuracy, equivalence, and code-quality met-
rics.

• A comparative analysis of Gemini vs. GPT-4.1-nano,
highlighting trade-offs in maintainability and token ef-
ficiency.

Beyond its practical utility as a developer tool, CodeFume is
the result of a structured research effort aimed at evaluating the
feasibility and reliability of prompt-based code intelligence.
This study investigates its effectiveness in generating accu-
rate, high-quality code refactorings compared to both baseline
tools and human-written alternatives. The following research
questions guide our analysis:

A. Research Questions

RQ1: How reliably can CodeFume detect complex code
smells (god class, feature envy, long method, large class)?

RQ2: To what extent can CodeFume’s LLM-generated
refactorings be considered functionally equivalent to human-
written refactorings?

RQ3: How does the quality of refactored code produced
by CodeFume compare to human refactorings in terms of
maintainability and complexity metrics?

RQ4: What are the limitations of prompt-based refactoring
in capturing nuanced, context-specific human suggestions?

RQ5: How effective is CodeFume at reducing structural
code complexity according to standard static analysis metrics?

RQ6: How do different LLMs (GPT vs. Gemini) affect the
quality, consistency, and correctness of code smell detection
and refactoring in CodeFume?

II. BACKGROUND AND RELATED WORK

Traditional tools for code smell detection, such as Sonar-
Qube [2] and JDeodorant [3], rely on static analysis tech-
niques and hand-crafted rules applied over abstract syntax
trees (ASTs). These approaches are effective at identifying
well-known structural patterns such as Long Method or God



Object, but they often fall short in understanding the semantic
context of code. This limitation becomes particularly evident
in non-standard, obfuscated, or dynamically typed codebases.

Recent work has explored using large language models
(LLMs) for code synthesis, completion, and transformation
tasks [4], [5], but few systems leverage LLMs for comprehen-
sive smell detection, explanation, and automated refactoring.
While tools like GitHub Copilot [6] offer assistive code
suggestions, they do not explicitly identify design flaws or
recommend structural improvements grounded in software
engineering principles.

CodeFume addresses this gap by introducing an LLM-
driven architecture for semantic code smell analysis. Unlike
rule-based tools, CodeFume applies prompt-based reasoning
using Gemini to semantically detect smells, generate refactor-
ings, and conduct comparative analyses of functionality and
structure. This three-stage pipeline enhances flexibility and
explainability, offering a practical solution to maintainability
issues often overlooked by traditional tools.

III. SYSTEM OVERVIEW: CODEFUME

CodeFume is an intelligent code analysis platform designed
to detect and remediate code smells—subtle structural issues
that suggest deeper design flaws or maintainability problems
in software systems. The platform provides an end-to-end
workflow that begins with user-submitted source code, either
via direct text input or file upload, and proceeds through
a multi-stage backend pipeline for automated analysis and
refactoring.

Fig. 1: System architecture

CodeFume features a modern architecture, with a React-
based frontend for user interaction and a Flask-powered
backend for logic orchestration. The core of its analytical
capabilities is powered by the Gemini large language model,
which is integrated at multiple critical stages to enable high-
fidelity semantic analysis and transformation of code.

The analytical engine of CodeFume functions in three
sequential stages:

1) Code Smell Detection: A dedicated prompt is issued
to the Gemini model to identify prevalent code smells
such as Long Method, Large Class, Feature Envy, and
God Object. Detected smells are annotated with severity
levels (e.g., High, Medium), descriptive justifications,
and relevant code snippets.

2) Refactoring: A separate prompt generates an improved
version of the code that addresses the specific issues
previously detected. These refactorings are aligned with
established software engineering principles such as the
Single Responsibility Principle and encapsulation.

3) Comparative Analysis: A final prompt compares the
original and refactored code to assess structural and
functional differences. This includes a summary of lines
added and removed, a functional equivalence check to
ensure correctness, and a side-by-side diff with expla-
nations of key changes.

The output interface presents users with a structured, vi-
sually coherent display of the results. It details what code
smells were detected, their severity and impact, and provides
targeted refactoring suggestions. By combining the reasoning
capabilities of large language models with the discipline of
static analysis, CodeFume offers a novel, explainable, and
practical tool to improve code maintainability, reduce technical
debt, and promote clean architecture in software development.

IV. METHODOLOGY

A. Testing System Overview

Our experimental framework consists of a custom pipeline
built in Python that integrates LLM-based code smell detection
and automated refactoring. The core logic is implemented in
two key scripts:

• automated_test.py – conducts end-to-end experi-
ments on Long Method, Feature Envy, and God Object
smells using static datasets.

• large_class_refactor.py – processes live
GitHub code samples for Large Class smell using
extracted links.

The main configuration is handled via a custom service
class, CodeSmellService, which manages LLM commu-
nication (detection, refactoring, comparison), JSON parsing,
and error handling.

B. Smell Detection and Refactoring

We used Google’s Gemini model for both smell detection
and code improvement. Two separate prompts are utilized:

• Detection Prompt: Identifies only the four smells (Long
Method, Large Class, Feature Envy, God Object), return-
ing type, location, severity, description, and refactoring
suggestion in JSON format.

• Refactoring Prompt: Uses the above JSON output and
the original code to return refactored files with changes
limited to resolving the detected smells.

All results are processed using zero-shot prompting to avoid
overfitting and maintain generalizability.

C. Dataset

The system is evaluated over two types of datasets:
• Java Dataset (Static, Offline) [7]:

– 100 manually labeled cases.



– Code smells: Long Method, Feature Envy, God Ob-
ject.

– File structure: before.java (original),
after.java (human refactored).

• C# Dataset (Online, GitHub-based) [8]:
– Extracted using using GitHub API.
– Used only for Large Class detection and refactoring.

D. Evaluation Metrics

We implemented a custom static analysis engine in Python
to compute the following metrics:

• Cyclomatic Complexity (CC): Total number of control
flow branches (if, for, while, switch) + 1.

• Method Count: Number of function declarations.
• Average Method Length: Ratio of total lines to method

count.
• Maintainability Index (MI): Calculated using Halstead

metrics, CC, and total lines.
• Comment Density: Ratio of comment lines to total lines

(comments + code).
• Duplication Percentage: Percentage of repeated line

hashes in the code.
• Total Lines: Code + comment lines.
Metric computation is done for:
• The original (smelly) code.
• Human-refactored code.
• LLM-refactored code.

E. Functional Equivalence Evaluation

To assess whether LLM refactorings preserved functional
behavior, we used a third prompt to compare human and LLM
refactorings and return:

• Structural differences.
• Overlap in suggestions applied.
• Final verdict: true / false on equivalence.
This step ensures that we do not overestimate quality purely

based on metric improvements.

F. Output Format

All results for each test case are written to
analysis_results.txt which includes:

• Original and refactored code
• Diff summary
• Smell analysis in JSON
• Functional equivalence result
• Metric breakdown for each version
Thus for each test case, the system generates a structured

result file containing the following components:
• Code Smell Detection Output: JSON-formatted analysis

including smell type, location, severity, description, and
suggested refactorings.

• LLM Refactoring Output: Code generated by the LLM
based on the detected smells and suggestions.

• Comparison Report: LLM-generated comparison be-
tween human and model refactorings to evaluate struc-
tural changes and functional equivalence.

• Metric Reports: Quantitative evaluation of code quality
before and after refactoring using complexity, maintain-
ability, and duplication-related metrics.

• Aggregated Results: Final summaries of smell detection
counts, equivalence rates, and metric averages are com-
piled into a consolidated result file.

These outputs provide a comprehensive basis for both
qualitative and quantitative assessment of LLM-based code
refactoring performance, and are further discussed in the
Results and Discussion section.

G. LLM Comparison Experiment

To investigate how different LLMs affect the performance
of CodeFume, we conducted a controlled comparison using
two leading models: OpenAI’s gpt-4.1-nano and Google’s
gemini-2.0-flash. Both models were integrated into the
same experimental pipeline, using identical code samples,
prompts, and evaluation procedures to ensure fairness and
consistency.

For each selected input, both LLMs were given the same
detection and refactoring prompts. The outputs were then
evaluated using the same set of metrics: detection accuracy,
structural code quality improvements (e.g., complexity reduc-
tion, maintainability gain), and functional equivalence against
human refactorings (if available).

This dual-model setup allowed us to analyze the strengths
and weaknesses of each LLM in the context of semantic code
analysis and transformation. The results of this comparison
are discussed in Section V, highlighting both overlapping
capabilities and distinct behavioral patterns across models.

V. RESULTS

Our comprehensive analysis of CodeFume’s performance
across four distinct code smell types reveals significant insights
into LLM-based detection and refactoring capabilities. We
evaluated CodeFume on two datasets: 100 manually labeled
Java cases (static) and 54 real-world C# samples (based
on GitHub). During initial trials, we experimented with five
different prompt formulations per smell but found the accuracy
unsatisfactory. We then consolidated our approach into a
single, comprehensive prompt that detects all four code smells
in one pass—outputting results in a uniform JSON schema—to
maximize LLM performance and deliver a consistent, user-
friendly experience. Since each sample in our data sets was
preannotated with its true code smells, we were able to directly
measure the detection accuracy of the LLM and compare
the automated refactorings of Gemini with human-crafted
versions. The detailed results are shown below.

A. Detection Accuracy

This section presents results for RQ1. CodeFume demon-
strated varying detection accuracy across different code smell
types:



• Long Method: 100% detection rate
• Large Class: 89% detection rate (48/54 cases correctly

identified)
• Feature Envy: 52.5% detection rate
• God Object: Detection varied based on classification

approach (26% when classified strictly as God Object,
74% when categorized as Large Class)

TABLE I: Detection Accuracy by Code Smell

Smell Type Detection Rate (%)

Long Method 100.0
Large Class 89.0
Feature Envy 52.5
God Object (strict) 26.0
God Object (as Large Class) 74.0

This variance suggests that LLMs have stronger pattern
recognition capabilities for structural smells with clear syn-
tactic signatures (Long Method, Large Class) compared to
semantic-dependent smells like Feature Envy that require
deeper contextual understanding. Our prompt-based approach
was most effective for smells with distinct structural patterns
and clear boundaries.

B. Functional Equivalence

This section presents results for RQ2. Functional equiva-
lence between LLM-generated and human refactorings varied
by smell type:

• Long Method: 60% functional equivalence
• Feature Envy: 59% functional equivalence
• God Object: 59% functional equivalence
• Large Class: 94.4% functional equivalence (51/54 cases)

TABLE II: Functional Equivalence of LLM Refactorings

Smell Type Equivalence Rate (%)

Long Method 60.0
Feature Envy 59.0
God Object 59.0
Large Class 94.4

The high equivalence for Large Class refactorings suggests
that LLMs have a strong understanding of class decomposi-
tion principles. The lower equivalence rates for other smell
types indicate challenges in preserving complex behavioral
semantics, particularly when refactoring methods with intricate
control flows and variable interdependencies.

C. Refactoring Quality by Smell Type

This section presents results for RQ3.
1) Long Method:
• Human refactorings reduced complexity by 46.7%, while

Gemini showed no improvement
• Human refactorings improved maintainability by 18.2%,

while Gemini decreased it by 9.8%
• Human refactorings reduced method length, while Gem-

ini increased it by 44.7%

• Human refactorings reduced code size, while Gemini
increased it by 23.6%

Listing 1: Before Refactoring (Long Method)
public void processOrder(Order o) {

// 45 lines of mixed logic...
// calculation, validation,
// notification, persistence

}

Listing 2: After Refactoring (Long Method)
// Refactored by CodeFume
public void processOrder(Order o) {

validateEach(o);
calculateSum(o);
notifyPerson(o);
persistOrder(o);

}
private void validateEach(Order o) {...}
private void calculateSum(Order o) {...}
private void notifyPerson(Order o) {...}
private void persistOrder(Order o) {...}

Fig. 2: Long Method refactor example produced by CodeFume

2) Feature Envy:

• Human refactorings reduced complexity by 61%, while
Gemini achieved only 8.4% reduction

• Human refactorings improved maintainability by 38.1%,
while Gemini achieved 16.9%

• Gemini achieved better method length reduction (70.5%)
• Human refactorings reduced code size by 56.8%, while

Gemini achieved only 1.9% reduction
• Gemini created 5x more methods through extraction

3) God Object:

• Gemini achieved superior complexity reduction compared
to humans (75.8% vs. 28.8%)

• Gemini showed 5x greater maintainability improvement
than human approaches

• Gemini reduced method length by 65%, while human
refactorings increased it by 22%

• Gemini reduced code size by 83.7%, outperforming hu-
man refactorings

4) Large Class:

• Gemini achieved substantial complexity reduction
(61.2%)

• Gemini showed remarkable maintainability improvement
(212.2%)

• Gemini reduced code size by 64.1%

These results reveal that CodeFume outperforms human
refactorings for structural smells (God Object, Large Class) but
underperforms for behavioral smells (Long Method, Feature
Envy).



D. Limitations of Prompt-Based Refactoring

This section presents results for RQ4. Our analysis identified
several limitations in prompt-based refactoring:

• Algorithm Understanding Gap: LLMs struggle to fully
comprehend the algorithmic intent behind complex meth-
ods, leading to functionally correct but suboptimal refac-
torings.

• Context Sensitivity: Prompt-based approaches have lim-
ited ability to capture domain-specific considerations that
humans incorporate in their refactorings, such as perfor-
mance trade-offs or architectural coherence.

• Execution Flow Limitations: LLMs showed difficulty
in tracing complex execution paths, particularly when
refactoring methods with multiple conditional branches
or exception handling.

• Variable Lifecycle Blindness: Refactorings often missed
opportunities to optimize variable scopes or failed to
identify redundant state management that human refac-
torings addressed.

• Documentation and Naming Context: While LLMs
could restructure code, they sometimes lost important
context in method and class naming conventions estab-
lished in the original codebase.

These limitations were most evident in Feature Envy refac-
torings, where the LLM often identified the presence of
the smell but struggled to move functionality to the correct
recipient class based on semantic understanding of the code’s
purpose.

E. Structural Complexity Reduction

This section presents results for RQ5. CodeFume’s effec-
tiveness at reducing structural complexity varied significantly
by smell type:

1) Cyclomatic Complexity Reduction:

• Long Method: No improvement (0%)
• Feature Envy: Modest reduction (8.4%)
• God Object: Substantial reduction (75.8%)
• Large Class: Significant reduction (61.2%)

TABLE III: Cyclomatic Complexity Reduction by Smell Type

Smell Type Reduction (%)

Long Method 0.0
Feature Envy 8.4
God Object 75.8
Large Class 61.2

2) Maintainability Index Improvement:

• Long Method: Degradation (-9.8%)
• Feature Envy: Moderate improvement (16.9%)
• God Object: Substantial improvement (outperforming hu-

mans 5x)
• Large Class: Dramatic improvement (212.2%)

TABLE IV: Maintainability Index Improvement by Smell Type

Smell Type Improvement (%)

Long Method -9.8
Feature Envy 16.9
God Object 5x more than human
Large Class 212.2

3) Method Length and Code Size:
• Long Method: Increased method length (44.7%) and code

size (23.6%)
• Feature Envy: Reduced method length (70.5%) but min-

imal code size reduction (1.9%)
• God Object: Significantly reduced method length (65%)

and code size (83.7%)
• Large Class: Reduced code size (64.1%)
These metrics demonstrate that CodeFume is highly effec-

tive at reducing structural complexity for class-level smells
(God Object, Large Class) but less effective for method-level
smells (Long Method, Feature Envy).

F. Model Comparison: Gemini vs. GPT

This section presents results for RQ6. Our comparative
analysis between Gemini and GPT-4 revealed important dif-
ferences:

1) Detection Accuracy:
• Long Method: Similar performance (Gemini: 100%, GPT:

99%)
• Feature Envy: GPT showed significantly better detection

(92.9% vs. 52.5%)
2) Functional Equivalence:
• Long Method: Comparable (Gemini: 60%, GPT: 58%)
• Feature Envy: GPT slightly higher (64.6% vs. 59.6%)
3) Quality Metrics:
• Long Method:

– Complexity reduction: GPT better (2.32 vs. 0.28)
– Maintainability: Gemini better (+0.73 vs. -4.51)

• Feature Envy:
– Complexity: Gemini reduced (1.42) while GPT in-

creased (-1.06)
– Maintainability: Gemini improved (+5.86) while

GPT degraded (-5.38)
4) Refactoring Approaches:
• GPT employed more aggressive decomposition with bet-

ter complexity reduction but sometimes at the cost of
maintainability

• Gemini used a more balanced approach that better pre-
served code readability and maintainability

• GPT created more methods during extraction, while Gem-
ini focused on meaningful reorganization

5) Token Efficiency:
• Gemini offers significantly higher token limits (1,000,000

vs. 8,000-16,000)



• Gemini can process approximately 80,000-100,000 lines
of Java code vs. 700-1,400 for GPT

Based on these findings, we selected Gemini for our final
implementation due to its better maintainability preservation,
more balanced refactoring approach, and significantly higher
token limits that enable processing larger codebases.

G. Structural vs. Behavioral Refactoring
Our findings highlight a clear pattern: LLMs excel at

structural refactoring (God Object, Large Class) but struggle
with behavioral refactoring (Long Method, Feature Envy):

1) LLM Strengths in Structural Refactoring:
• Pattern recognition of class-level architectural patterns
• Clear boundaries for decomposition
• Mechanical transformation through class extraction
• Lower risk of breaking functionality during structural

changes
2) LLM Limitations in Behavioral Refactoring:
• Algorithm understanding gaps
• Context sensitivity requirements
• Performance trade-offs blindness
• Execution flow limitations
• Variable lifecycle understanding challenges

VI. DISCUSSION

Our evaluation revealed clear patterns and several practical
takeaways:

We found that CodeFume excels at detecting and refactoring
structural code smells (Long Method, Large Class, God
Object), achieving up to 100% detection accuracy and over
200% improvements in maintainability. In contrast, behavioral
smells (Feature Envy, method-level issues) consistently saw
lower detection (nearly 50%) and smaller metric gains. It was
surprising that for God Object, Gemini outperformed human
refactorings in both complexity reduction (75.8% vs. 28.8%)
and maintainability (5× improvement).

A. Key Insights

• Structural Patterns Are “Easy Wins.” LLMs leverage clear
syntactic boundaries to break apart large classes and god
objects reliably.

• Behavioral Semantics Remain Challenging. Without do-
main context, the model struggles to reassign responsi-
bilities (Feature Envy) or decompose complex methods
meaningfully.

• Prompt Design Matters. Our switch to a single, unified
prompt vastly improved consistency and user experience.

B. Strengths

• High detection accuracy on class-level smells.
• Automated refactorings for structural smells preserve

functionality at 94 % equivalence.
• JSON-structured outputs integrate seamlessly into CI/CD

pipelines and IDE plugins.

C. Limitations

Although our “Limitations” subsection (RQ4) detailed al-
gorithmic and context-sensitivity gaps, we also note:

• Dataset Scope: Only Java and C# were tested; results
may not generalize to dynamic languages or functional
paradigms.

• Prompt Variability: Even our final prompt can yield
different outputs under minor wording changes.

• No Human-in-the-Loop Study: We have yet to measure
developer acceptance or time savings in practice.

D. Applicability

CodeFume is best suited for:
• Legacy System Modernization: Rapidly decomposing

monolithic classes in large codebases.
• Automated Code Review: As a CI check to flag and

optionally auto-refactor structural smells.
• Educational Tools: Teaching students about SOLID prin-

ciples through hands-on refactoring examples.

VII. THREATS TO VALIDITY

• Internal Validity: The smell annotations in our datasets
may contain bias or inconsistencies, potentially affecting
detection accuracy metrics.

• External Validity: Our study is limited to Java and
C# codebases, and findings may not generalize to other
programming languages or paradigms.

• Construct Validity: The metrics we used to evaluate
code quality (cyclomatic complexity, maintainability in-
dex) may not fully capture the nuanced aspects of code
quality and readability.

• Reliability: LLM outputs show variability based on
prompt formulation and internal randomness, so results
may fluctuate across repeated runs.

VIII. CONCLUSION AND FUTURE WORK

A. Contributions

We summarize our key contributions:
1) A novel two-stage, prompt-based LLM pipeline for se-

mantic code-smell detection and automated refactoring.
2) A uniform JSON schema output enabling CI/CD and

IDE integration.
3) A comprehensive evaluation framework on Java and

C# datasets measuring detection accuracy, functional
equivalence, and code-quality metrics.

4) A comparative analysis of Google Gemini vs. GPT-
4.1-nano, highlighting trade-offs in maintainability and
token efficiency.

B. Conclusion

CodeFume demonstrates that LLM-driven approaches offer
a promising direction for automated code smell detection and
refactoring, with several important findings:

First, our analysis shows that LLMs possess strong capabil-
ities in identifying structural code smells through zero-shot



prompting, with accuracy rates ranging from 89-100% for
Long Method and Large Class. However, detection accuracy
drops significantly (52.5%) for more semantically complex
smells like Feature Envy that require deeper contextual un-
derstanding.

Second, preserving functionality during refactoring remains
challenging, with equivalence rates of 59-60% for most smell
types. The exception is Large Class refactoring, where equiva-
lence reached 94% - suggesting LLMs better understand class
decomposition than method-level transformations.

Third, LLM effectiveness varies significantly by smell type.
For structural refactorings (God Object, Large Class), LLMs
can achieve dramatic improvements in complexity (61-76%
reduction) and maintainability (up to 212% improvement) that
often exceed human refactorings. However, for behavioral
refactorings (Long Method, Feature Envy), LLMs struggle to
match human quality, sometimes even degrading metrics.

Fourth, zero-shot instruction-based prompting showed limi-
tations in capturing context-specific considerations, algorithm
understanding, and execution flow analysis that human experts
incorporate in their refactorings.

Fifth, CodeFume demonstrated highly effective structural
complexity reduction for class-level smells (61-76% reduction)
but less effectiveness for method-level smells.

Finally, different LLMs showed distinct strengths, with
Gemini offering better maintainability preservation and token
efficiency, while GPT provided more aggressive decomposi-
tion and feature envy detection.

These results confirm that LLM-based code smell detec-
tion and refactoring is viable, particularly for structural code
smells. While not yet matching human refactoring quality
across all smell types, tools like CodeFume can serve as
valuable assistants in the refactoring process, especially for
initial decomposition of large classes and god objects.

C. Future Work

Several promising directions for future research emerge
from our findings:

1) Few-shot Prompting: Investigating whether adding ex-
amples of high-quality refactorings to prompts could
improve LLM performance, particularly for behavioral
refactorings like Long Method and Feature Envy.

2) Domain-specific Fine-tuning: Training specialized
models on code refactoring datasets could potentially
improve both detection accuracy and refactoring quality.

3) Hybrid Approaches: Combining traditional static anal-
ysis tools with LLM-based semantic understanding
could leverage the strengths of both approaches.

4) Expanded Smell Coverage: Extending CodeFume to
detect additional code smells like Duplicate Code, Prim-
itive Obsession, and Data Class would increase the tool’s
utility.

5) Integration with IDEs: Developing IDE plugins for
CodeFume would streamline the workflow for devel-
opers, allowing real-time smell detection and suggested
refactorings.

6) Human-LLM Collaboration Models: Exploring inter-
active workflows where LLMs suggest refactorings and
humans approve or modify them could optimize the
refactoring process.

7) Performance Optimization: Investigating techniques to
reduce token usage and execution time would make
CodeFume more practical for real-world development
scenarios.

8) Cross-language Support: Extending support to addi-
tional programming languages would broaden the tool’s
applicability.

As LLM capabilities continue to evolve, tools like Code-
Fume have significant potential to enhance code quality by
making refactoring more accessible and efficient. The combi-
nation of semantic understanding and structured transforma-
tion offered by LLMs represents a powerful new paradigm
for automated code improvement that complements traditional
static analysis approaches.

REFERENCES

[1] CodeFume, “Codefume,” n.d., accessed: 2025-05-16. [Online]. Available:
https://github.com/CS437-24-SP/T9-CodeFumeRepo

[2] SonarSource, “Static code analysis using sonarqube: A step-by-
step guide,” n.d., accessed: 2025-05-16. [Online]. Available: https:
//www.sonarsource.com/learn/static-code-analysis-using-sonarqube/

[3] N. Tsantalis, “Jdeodorant,” n.d., accessed: 2025-05-16. [Online].
Available: https://github.com/tsantalis/JDeodorant

[4] OpenAI, “Openai codex,” 2021, accessed: 2025-05-16. [Online].
Available: https://en.wikipedia.org/wiki/OpenAI Codex

[5] Microsoft Research, “Codebert: A pre-trained model for programming
and natural languages,” 2020, accessed: 2025-05-16. [Online]. Available:
https://github.com/microsoft/CodeBERT

[6] GitHub, “Getting code suggestions in your ide
with github copilot,” n.d., accessed: 2025-05-16. [On-
line]. Available: https://docs.github.com/en/copilot/using-github-copilot/
getting-code-suggestions-in-your-ide-with-github-copilot

[7] Kachanov, Vladimir and Markov, Sergey, “Trusted code smells dataset,”
2023. [Online]. Available: https://doi.org/10.5281/zenodo.7612725

[8] Pereira dos Reis, José and Brito e Abreu, Fernando and Figueiredo
Carneiro, Glauco, “Code smells dataset (oracles),” 2022. [Online].
Available: https://doi.org/10.5281/zenodo.6555241

APPENDIX A
APPENDIX

Example prompts, outputs, and full metric tables can be
found in our replication package.

https://github.com/CS437-24-SP/T9-CodeFumeRepo
https://www.sonarsource.com/learn/static-code-analysis-using-sonarqube/
https://www.sonarsource.com/learn/static-code-analysis-using-sonarqube/
https://github.com/tsantalis/JDeodorant
https://en.wikipedia.org/wiki/OpenAI_Codex
https://github.com/microsoft/CodeBERT
https://docs.github.com/en/copilot/using-github-copilot/getting-code-suggestions-in-your-ide-with-github-copilot
https://docs.github.com/en/copilot/using-github-copilot/getting-code-suggestions-in-your-ide-with-github-copilot
https://doi.org/10.5281/zenodo.7612725
https://doi.org/10.5281/zenodo.6555241


Fig. 3: Example detection prompt used in our experiments.

Fig. 4: Example refactoring prompt used in our experiments.

Fig. 5: CodeFume main page.

Fig. 6: Input taking page.

Fig. 7: Sample analysis result output.

Fig. 8: Sample comparative analysis output.

Fig. 9: Sample comparative explanation output.

Fig. 10: Sample improved code suggestion.


	Introduction
	Research Questions

	Background and Related Work
	System Overview: CodeFume
	Methodology
	Testing System Overview
	Smell Detection and Refactoring
	Dataset
	Evaluation Metrics
	Functional Equivalence Evaluation
	Output Format
	LLM Comparison Experiment

	Results
	Detection Accuracy
	Functional Equivalence
	Refactoring Quality by Smell Type
	Long Method
	Feature Envy
	God Object
	Large Class

	Limitations of Prompt-Based Refactoring
	Structural Complexity Reduction
	Cyclomatic Complexity Reduction
	Maintainability Index Improvement
	Method Length and Code Size

	Model Comparison: Gemini vs. GPT
	Detection Accuracy
	Functional Equivalence
	Quality Metrics
	Refactoring Approaches
	Token Efficiency

	Structural vs. Behavioral Refactoring
	LLM Strengths in Structural Refactoring
	LLM Limitations in Behavioral Refactoring


	Discussion
	Key Insights
	Strengths
	Limitations
	Applicability

	Threats to Validity
	Conclusion and Future Work
	Contributions
	Conclusion
	Future Work

	References
	Appendix A: Appendix

